Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559113

RESUMO

Factors that contribute to durable immunological memory remain incompletely understood. In our longitudinal analyses of CD4+ T cell responses to the yellow fever virus (YFV) vaccine by peptide-MHC tetramers, we unexpectedly found naïve phenotype virus-specific CD4+ T cells that persisted months to years after immunization. These Marker negative T cells (TMN) lacked CD95, CXCR3, CD11a, and CD49d surface protein expression, distinguishing them from previously discovered stem-cell memory T cells. Functionally, they resembled genuine naïve T cells upon in vitro stimulation. Single-cell TCR sequencing detected expanded clonotypes within the TMN subset and identified a shared repertoire with memory and effector T cells. T cells expressing TMN-associated TCRs were rare before vaccination, suggesting their expansion following vaccination. Longitudinal tracking of YFV-specific responses over the subsequent years revealed superior stability of the TMN subset and their association with the longevity of the overall population. The identification of these long-lived, antigen-experienced T cells may inform the design of durable T cell-based vaccines and engineered T cell therapies.

2.
iScience ; 26(10): 107967, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37822504

RESUMO

As SARS-CoV-2 becomes endemic, it is critical to understand immunity following early-life infection. We evaluated humoral responses to SARS-CoV-2 in 23 infants/young children. Antibody responses to SARS-CoV-2 spike antigens peaked approximately 30 days after infection and were maintained up to 500 days with little apparent decay. While the magnitude of humoral responses was similar to an adult cohort recovered from mild/moderate COVID-19, both binding and neutralization titers to WT SARS-CoV-2 were more durable in infants/young children, with spike and RBD IgG antibody half-life nearly 4X as long as in adults. IgG subtype analysis revealed that while IgG1 formed the majority of the response in both groups, IgG3 was more common in adults and IgG2 in infants/young children. These findings raise important questions regarding differential regulation of humoral immunity in infants/young children and adults and could have broad implications for the timing of vaccination and booster strategies in this age group.

3.
Vaccines (Basel) ; 11(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37631880

RESUMO

Understanding the waning of vaccine-induced protection is important for both immunology and public health. Population heterogeneities in underlying (pre-vaccination) susceptibility and vaccine response can cause measured vaccine effectiveness (mVE) to change over time, even in the absence of pathogen evolution and any actual waning of immune responses. We use multi-scale agent-based models parameterized using epidemiological and immunological data, to investigate the effect of these heterogeneities on mVE as measured by the hazard ratio. Based on our previous work, we consider the waning of antibodies according to a power law and link it to protection in two ways: (1) motivated by correlates of risk data and (2) using a within-host model of stochastic viral extinction. The effect of the heterogeneities is given by concise and understandable formulas, one of which is essentially a generalization of Fisher's fundamental theorem of natural selection to include higher derivatives. Heterogeneity in underlying susceptibility accelerates apparent waning, whereas heterogeneity in vaccine response slows down apparent waning. Our models suggest that heterogeneity in underlying susceptibility is likely to dominate. However, heterogeneity in vaccine response offsets <10% to >100% (median of 29%) of this effect in our simulations. Our study suggests heterogeneity is more likely to 'bias' mVE downwards towards the faster waning of immunity but a subtle bias in the opposite direction is also plausible.

4.
PLoS Comput Biol ; 19(8): e1011377, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37603552

RESUMO

Antibodies and humoral memory are key components of the adaptive immune system. We consider and computationally model mechanisms by which humoral memory present at baseline might increase rather than decrease infection load; we refer to this effect as EI-HM (enhancement of infection by humoral memory). We first consider antibody dependent enhancement (ADE) in which antibody enhances the growth of the pathogen, typically a virus, and typically at intermediate 'Goldilocks' levels of antibody. Our ADE model reproduces ADE in vitro and enhancement of infection in vivo from passive antibody transfer. But notably the simplest implementation of our ADE model never results in EI-HM. Adding complexity, by making the cross-reactive antibody much less neutralizing than the de novo generated antibody or by including a sufficiently strong non-antibody immune response, allows for ADE-mediated EI-HM. We next consider the possibility that cross-reactive memory causes EI-HM by crowding out a possibly superior de novo immune response. We show that, even without ADE, EI-HM can occur when the cross-reactive response is both less potent and 'directly' (i.e. independently of infection load) suppressive with regard to the de novo response. In this case adding a non-antibody immune response to our computational model greatly reduces or completely eliminates EI-HM, which suggests that 'crowding out' is unlikely to cause substantial EI-HM. Hence, our results provide examples in which simple models give qualitatively opposite results compared to models with plausible complexity. Our results may be helpful in interpreting and reconciling disparate experimental findings, especially from dengue, and for vaccination.


Assuntos
Anticorpos Neutralizantes , Vacinação , Reações Cruzadas
5.
ArXiv ; 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37205263

RESUMO

Understanding waning of vaccine-induced protection is important for both immunology and public health. Population heterogeneities in underlying (pre-vaccination) susceptibility and vaccine response can cause measured vaccine effectiveness (mVE) to change over time even in the absence of pathogen evolution and any actual waning of immune responses. We use a multi-scale agent-based models parameterized using epidemiological and immunological data, to investigate the effect of these heterogeneities on mVE as measured by the hazard ratio. Based on our previous work, we consider waning of antibodies according to a power law and link it to protection in two ways: 1) motivated by correlates of risk data and 2) using a within-host model of stochastic viral extinction. The effect of the heterogeneities is given by concise and understandable formulas, one of which is essentially a generalization of Fisher's fundamental theorem of natural selection to include higher derivatives. Heterogeneity in underlying susceptibility accelerates apparent waning, whereas heterogeneity in vaccine response slows down apparent waning. Our models suggest that heterogeneity in underlying susceptibility is likely to dominate. However, heterogeneity in vaccine response offsets <10% to >100% (median of 29%) of this effect in our simulations. Our methodology and results may be helpful in understanding competing heterogeneities and waning of immunity and vaccine-induced protection. Our study suggests heterogeneity is more likely to 'bias' mVE downwards towards faster waning of immunity but a subtle bias in the opposite direction is also plausible.

6.
medRxiv ; 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37090559

RESUMO

Since the emergence of SARS-CoV-2, research has shown that adult patients mount broad and durable immune responses to infection. However, response to infection remains poorly studied in infants/young children. In this study, we evaluated humoral responses to SARS-CoV-2 in 23 infants/young children before and after infection. We found that antibody responses to SARS-CoV-2 spike antigens peaked approximately 30 days after infection and were maintained up to 500 days with little apparent decay. While the magnitude of humoral responses was similar to an adult cohort recovered from mild/moderate COVID-19, both binding and neutralization titers to WT SARS-CoV-2 were more durable in infants/young children, with Spike and RBD IgG antibody half-life nearly 4X as long as in adults. The functional breadth of adult and infant/young children SARS-CoV-2 responses were comparable, with similar reactivity against panel of recent and previously circulating viral variants. Notably, IgG subtype analysis revealed that while IgG1 formed the majority of both adults' and infants/young children's response, IgG3 was more common in adults and IgG2 in infants/young children. These findings raise important questions regarding differential regulation of humoral immunity in infants/young children and adults and could have broad implications for the timing of vaccination and booster strategies in this age group.

7.
J Clin Invest ; 133(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36951954

RESUMO

BackgroundMaintaining durable immunity following vaccination represents a major challenge, but whether mRNA booster vaccination improves durability is unknown.MethodsWe measured antibody responses in 55 healthy adults, who received a booster dose of the Pfizer-BioNTech or Moderna vaccine against SARS-CoV-2 and calculated the half-life of the antibody titers. We also measured memory B and T cell responses in a subset of 28 participants. In 13 volunteers who received a second booster vaccine, we measured serum antibody titers and memory B and T cell responses.ResultsThe booster (third immunization) dose at 6 to 10 months increased the half-life of the serum-neutralizing antibody (nAb) titers to 76 days from 56 to 66 days after the primary 2-dose vaccination. A second booster dose (fourth immunization) a year after the primary vaccination further increased the half-life to 88 days. However, despite this modestly improved durability in nAb responses against the ancestral (WA.1) strain, there was a loss of neutralization capacity against the Omicron subvariants BA.2.75.2, BQ.1.1, and XBB.1.5 (48-, 71-, and 66-fold drop in titers, respectively, relative to the WA.1 strain). Although only 45% to 65% of participants demonstrated a detectable nAb titer against the newer variants after the booster (third dose), the response declined to below the detection limit in almost all individuals by 6 months. In contrast, booster vaccination induced antigen-specific memory B and T cells that persisted for at least 6 months.ConclusionThe durability of serum antibody responses improves only marginally following booster immunizations with the Pfizer-BioNTech or Moderna mRNA vaccines.


Assuntos
COVID-19 , Adulto , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinas contra COVID-19 , Vacinação , RNA Mensageiro , Imunidade , Anticorpos Antivirais , Anticorpos Neutralizantes
8.
Clin Infect Dis ; 76(3): 479-486, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36056892

RESUMO

BACKGROUND: Developing accurate and reliable methods to estimate vaccine protection is a key goal in immunology and public health. While several statistical methods have been proposed, their potential inaccuracy in capturing fast intraseasonal waning of vaccine-induced protection needs to be rigorously investigated. METHODS: To compare statistical methods for estimating vaccine effectiveness (VE), we generated simulated data using a multiscale, agent-based model of an epidemic with an acute viral infection and differing extents of VE waning. We apply a previously proposed framework for VE measures based on the observational data richness to assess changes of vaccine-induced protection over time. RESULTS: While VE measures based on hard-to-collect information (eg, the exact timing of exposures) were accurate, usually VE studies rely on time-to-infection data and the Cox proportional hazards model. We found that its extension using scaled Schoenfeld residuals, previously proposed for capturing VE waning, was unreliable in capturing both the degree of waning and its functional form and identified the mathematical factors contributing to this unreliability. We showed that partitioning time and including a time-vaccine interaction term in the Cox model significantly improved estimation of VE waning, even in the case of dramatic, rapid waning. We also proposed how to optimize the partitioning scheme. CONCLUSIONS: While appropriate for rejecting the null hypothesis of no waning, scaled Schoenfeld residuals are unreliable for estimating the degree of waning. We propose a Cox-model-based method with a time-vaccine interaction term and further optimization of partitioning time. These findings may guide future analysis of VE waning data.


Assuntos
Vacinas contra Influenza , Vacinação , Humanos , Vacinação/métodos , Simulação por Computador , Modelos de Riscos Proporcionais
9.
medRxiv ; 2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36482977

RESUMO

Waning immunity to vaccination represents a major challenge in vaccinology. Whether booster vaccination improves the durability of immune responses is unknown. Here we show, using a cohort of 55 adult vaccinees who received the BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) vaccine against SARS-CoV-2, that a booster (i.e., 3 rd immunization) dose at 6 - 10 months increased the half-life of serum neutralizing antibody (nAb) titers to 76 days from 56 - 66 days estimated after the primary two-dose vaccination series. A second booster dose (i.e., 4 th immunization) more than a year after the primary vaccination increased the half-life further to 88 days. However, despite this modestly improved durability in nAb responses against the Wuhan strain, there was a loss in neutralization capacity against Omicron subvariants, especially the recently emerged variants, BA.2.75.2 and BQ.1.1 (35 and 50-fold drop in titers respectively, relative to the ancestral (WA.1) strain. While only 55 â€" 65% of participants demonstrated a detectable nAb titer against the newer variants after the booster (3 rd dose), the response declined to below the detection limit in almost all individuals by 6 months. Notably, even against BA.1 and BA.5, the titers declined rapidly in a third of the vaccinees and were below the detection limit at 6 months. In contrast, booster vaccination induced antigen-specific memory B and T cells that persisted for at least 6 months. Collectively, our data show that the durability of immune responses improves following subsequent booster immunizations; however, the emergence of immune evasive variants reduces the effectiveness of booster doses in preventing infection.

10.
Front Immunol ; 13: 985478, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263031

RESUMO

Currently, vaccines for SARS-CoV-2 and influenza viruses are updated if the new vaccine induces higher antibody-titers to circulating variants than current vaccines. This approach does not account for complex dynamics of how prior immunity skews recall responses to the updated vaccine. We: (i) use computational models to mechanistically dissect how prior immunity influences recall responses; (ii) explore how this affects the rules for evaluating and deploying updated vaccines; and (iii) apply this to SARS-CoV-2. Our analysis of existing data suggests that there is a strong benefit to updating the current SARS-CoV-2 vaccines to match the currently circulating variants. We propose a general two-dose strategy for determining if vaccines need updating as well as for vaccinating high-risk individuals. Finally, we directly validate our model by reanalysis of earlier human H5N1 influenza vaccine studies.


Assuntos
COVID-19 , Virus da Influenza A Subtipo H5N1 , Vacinas contra Influenza , Influenza Humana , Humanos , SARS-CoV-2 , Vacinas contra COVID-19 , Influenza Humana/prevenção & controle , COVID-19/prevenção & controle
11.
Sci Transl Med ; 14(658): eabq4130, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35976993

RESUMO

Despite the remarkable efficacy of COVID-19 vaccines, waning immunity and the emergence of SARS-CoV-2 variants such as Omicron represents a global health challenge. Here, we present data from a study in nonhuman primates demonstrating durable protection against the Omicron BA.1 variant induced by a subunit SARS-CoV-2 vaccine comprising the receptor binding domain of the ancestral strain (RBD-Wu) on the I53-50 nanoparticle adjuvanted with AS03, which was recently authorized for use in individuals 18 years or older. Vaccination induced neutralizing antibody (nAb) titers that were maintained at high concentrations for at least 1 year after two doses, with a pseudovirus nAb geometric mean titer (GMT) of 1978 and a live virus nAb GMT of 1331 against the ancestral strain but not against the Omicron BA.1 variant. However, a booster dose at 6 to 12 months with RBD-Wu or RBD-ß (RBD from the Beta variant) displayed on I53-50 elicited high neutralizing titers against the ancestral and Omicron variants. In addition, we observed persistent neutralization titers against a panel of sarbecoviruses, including SARS-CoV. Furthermore, there were substantial and persistent memory T and B cell responses reactive to Beta and Omicron variants. Vaccination resulted in protection against Omicron infection in the lung and suppression of viral burden in the nares at 6 weeks after the final booster immunization. Even at 6 months after vaccination, we observed protection in the lung and rapid control of virus in the nares. These results highlight the durable and cross-protective immunity elicited by the AS03-adjuvanted RBD-I53-50 nanoparticle vaccine.


Assuntos
COVID-19 , Vacinas Virais , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , SARS-CoV-2 , Vacinas de Subunidades
12.
bioRxiv ; 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35665010

RESUMO

When should vaccines to evolving pathogens such as SARS-CoV-2 be updated? Our computational models address this focusing on updating SARS-CoV-2 vaccines to the currently circulating Omicron variant. Current studies typically compare the antibody titers to the new variant following a single dose of the original-vaccine versus the updated-vaccine in previously immunized individuals. These studies find that the updated-vaccine does not induce higher titers to the vaccine-variant compared with the original-vaccine, suggesting that updating may not be needed. Our models recapitulate this observation but suggest that vaccination with the updated-vaccine generates qualitatively different humoral immunity, a small fraction of which is specific for unique epitopes to the new variant. Our simulations suggest that these new variant-specific responses could dominate following subsequent vaccination or infection with either the currently circulating or future variants. We suggest a two-dose strategy for determining if the vaccine needs updating and for vaccinating high-risk individuals.

13.
J Clin Oncol ; 40(33): 3808-3816, 2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-35759727

RESUMO

PURPOSE: To examine COVID-19 mRNA vaccine-induced binding and neutralizing antibody responses in patients with non-small-cell lung cancer (NSCLC) to SARS-CoV-2 614D (wild type [WT]) strain and variants of concern after the primary 2-dose and booster vaccination. METHODS: Eighty-two patients with NSCLC and 53 healthy volunteers who received SARS-CoV-2 mRNA vaccines were included in the study. Blood was collected longitudinally, and SARS-CoV-2-specific binding and neutralizing antibody responses were evaluated by Meso Scale Discovery assay and live virus Focus Reduction Neutralization Assay, respectively. RESULTS: A majority of patients with NSCLC generated binding and neutralizing antibody titers comparable with the healthy vaccinees after mRNA vaccination, but a subset of patients with NSCLC (25%) made poor responses, resulting in overall lower (six- to seven-fold) titers compared with the healthy cohort (P = < .0001). Although patients age > 70 years had lower immunoglobulin G titers (P = < .01), patients receiving programmed death-1 monotherapy, chemotherapy, or a combination of both did not have a significant impact on the antibody response. Neutralizing antibody titers to the B.1.617.2 (Delta), B.1.351 (Beta), and in particular, B.1.1.529 (Omicron) variants were significantly lower (P = < .0001) compared with the 614D (WT) strain. Booster vaccination led to a significant increase (P = .0001) in the binding and neutralizing antibody titers to the WT and Omicron variant. However, 2-4 months after the booster, we observed a five- to seven-fold decrease in neutralizing titers to WT and Omicron viruses. CONCLUSION: A subset of patients with NSCLC responded poorly to the SARS-CoV-2 mRNA vaccination and had low neutralizing antibodies to the B.1.1.529 Omicron variant. Booster vaccination increased binding and neutralizing antibody titers to Omicron, but antibody titers declined after 3 months. These data highlight the concern for patients with cancer given the rapid spread of SARS-CoV-2 Omicron variant.


Assuntos
COVID-19 , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Idoso , Vacinas contra COVID-19 , Formação de Anticorpos , SARS-CoV-2 , Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Pulmonares/terapia , COVID-19/prevenção & controle , Anticorpos Antivirais , Imunização , Vacinação , Anticorpos Neutralizantes , RNA Mensageiro , Vacinas de mRNA
15.
J Virol ; 96(9): e0002622, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35404084

RESUMO

Humoral immunity is a major component of the adaptive immune response against viruses and other pathogens with pathogen-specific antibody acting as the first line of defense against infection. Virus-specific antibody levels are maintained by continual secretion of antibody by plasma cells residing in the bone marrow. This raises the important question of how the virus-specific plasma cell population is stably maintained and whether memory B cells are required to replenish plasma cells, balancing their loss arising from their intrinsic death rate. In this study, we examined the longevity of virus-specific antibody responses in the serum of mice following acute viral infection with three different viruses: lymphocytic choriomeningitis virus (LCMV), influenza virus, and vesicular stomatitis virus (VSV). To investigate the contribution of memory B cells to the maintenance of virus-specific antibody levels, we employed human CD20 transgenic mice, which allow for the efficient depletion of B cells with rituximab, a human CD20-specific monoclonal antibody. Mice that had resolved an acute infection with LCMV, influenza virus, or VSV were treated with rituximab starting at 2 months after infection, and the treatment was continued for up to a year postinfection. This treatment regimen with rituximab resulted in efficient depletion of B cells (>95%), with virus-specific memory B cells being undetectable. There was an early transient drop in the antibody levels after rituximab treatment followed by a plateauing of the curve with virus-specific antibody levels remaining relatively stable (half-life of 372 days) for up to a year after infection in the absence of memory B cells. The number of virus-specific plasma cells in the bone marrow were consistent with the changes seen in serum antibody levels. Overall, our data show that virus-specific plasma cells in the bone marrow are intrinsically long-lived and can maintain serum antibody titers for extended periods of time without requiring significant replenishment from memory B cells. These results provide insight into plasma cell longevity and have implications for B cell depletion regimens in cancer and autoimmune patients in the context of vaccination in general and especially for COVID-19 vaccines. IMPORTANCE Following vaccination or primary virus infection, virus-specific antibodies provide the first line of defense against reinfection. Plasma cells residing in the bone marrow constitutively secrete antibodies, are long-lived, and can thus maintain serum antibody levels over extended periods of time in the absence of antigen. Our data, in the murine model system, show that virus-specific plasma cells are intrinsically long-lived but that some reseeding by memory B cells might occur. Our findings demonstrate that, due to the longevity of plasma cells, virus-specific antibody levels remain relatively stable in the absence of memory B cells and have implications for vaccination.


Assuntos
Anticorpos Antivirais , Coriomeningite Linfocítica , Células B de Memória , Rituximab , Animais , Anticorpos Antivirais/sangue , Humanos , Imunidade Humoral , Memória Imunológica , Coriomeningite Linfocítica/imunologia , Células B de Memória/citologia , Camundongos , Camundongos Transgênicos , Infecções por Orthomyxoviridae/imunologia , Plasmócitos/citologia , Infecções por Rhabdoviridae/imunologia , Rituximab/farmacologia
16.
J Clin Oncol ; 40(26): 3020-3031, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-35436146

RESUMO

PURPOSE: Patients with non-Hodgkin lymphoma including chronic lymphocytic leukemia (NHL/CLL) are at higher risk of severe SARS-CoV-2 infection. We investigated vaccine-induced antibody responses in patients with NHL/CLL against the original SARS-CoV-2 strain and variants of concern including B.1.167.2 (Delta) and B.1.1.529 (Omicron). MATERIALS AND METHODS: Blood from 121 patients with NHL/CLL receiving two doses of vaccine were collected longitudinally. Antibody binding against the full-length spike protein, the receptor-binding, and N-terminal domains of the original strain and of variants was measured using a multiplex assay. Live-virus neutralization against Delta, Omicron, and the early WA1/2020 strains was measured using a focus reduction neutralization test. B cells were measured by flow cytometry. Correlation between vaccine response and clinical factors was determined. RESULTS: Mean anti-SARS-CoV-2 spike immunoglobulin G-binding titers were 85-fold lower in patients with NHL/CLL compared with healthy controls, with seroconversion occurring in only 67% of patients. Neutralization titers were also lower and correlated with binding titers (P < .0001). Treatment with anti-CD20-directed therapies within 1 year resulted in 136-fold lower binding titers. Peripheral blood B-cell count also correlated with vaccine response. At 3 months from last anti-CD20-directed therapy, B-cell count ≥ 4.31/µL blood around the time of vaccination predicted response (OR 7.46, P = .04). Antibody responses also correlated with age. Importantly, neutralization titers against Delta and Omicron were reduced six- and 42-fold, respectively, with 67% of patients seropositive for WA1/2020 exhibiting seronegativity for Omicron. CONCLUSION: Antibody binding and live-virus neutralization against SARS-CoV-2 and its variants of concern including Delta and Omicron were substantially lower in patients with NHL/CLL compared with healthy vaccinees. Anti-CD20-directed therapy < 1 year before vaccination and number of circulating B cells strongly predict vaccine response.


Assuntos
COVID-19 , Leucemia Linfocítica Crônica de Células B , Linfoma não Hodgkin , Vacinas , COVID-19/prevenção & controle , Humanos , Leucemia Linfocítica Crônica de Células B/terapia , Linfoma não Hodgkin/terapia , SARS-CoV-2 , Vacinas Sintéticas , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Vacinas de mRNA
17.
Cell Rep Med ; 3(4): 100603, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35480625

RESUMO

The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic highlights the importance of determining the breadth and durability of humoral immunity to SARS-CoV-2 mRNA vaccination. Herein, we characterize the humoral response in 27 naive and 40 recovered vaccinees. SARS-CoV-2-specific antibody and memory B cell (MBC) responses are durable up to 6 months, although antibody half-lives are shorter for naive recipients. The magnitude of the humoral responses to vaccination strongly correlates with responses to initial SARS-CoV-2 infection. Neutralization titers are lower against SARS-CoV-2 variants in both recovered and naive vaccinees, with titers more reduced in naive recipients. While the receptor-binding domain (RBD) is the main neutralizing target of circulating antibodies, Moderna-vaccinated naives show a lesser reliance on RBDs, with >25% neutralization remaining after depletion of RBD-binding antibodies. Overall, we observe that vaccination induces higher peak titers and improves durability in recovered compared with naive vaccinees. These findings have broad implications for current vaccine strategies deployed against the SARS-CoV-2 pandemic.


Assuntos
COVID-19 , Vacinas Virais , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , SARS-CoV-2/genética , Vacinação
18.
medRxiv ; 2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35018383

RESUMO

PURPOSE: We investigated SARS-CoV-2 mRNA vaccine-induced binding and live-virus neutralizing antibody response in NSCLC patients to the SARS-CoV-2 wild type strain and the emerging Delta and Omicron variants. METHODS: 82 NSCLC patients and 53 healthy adult volunteers who received SARS-CoV-2 mRNA vaccines were included in the study. Blood was collected longitudinally, and SARS-CoV-2-specific binding and live-virus neutralization response to 614D (WT), B.1.617.2 (Delta), B.1.351 (Beta) and B.1.1.529 (Omicron) variants were evaluated by Meso Scale Discovery (MSD) assay and Focus Reduction Neutralization Assay (FRNT) respectively. We determined the longevity and persistence of vaccine-induced antibody response in NSCLC patients. The effect of vaccine-type, age, gender, race and cancer therapy on the antibody response was evaluated. RESULTS: Binding antibody titer to the mRNA vaccines were lower in the NSCLC patients compared to the healthy volunteers (P=<0.0001). More importantly, NSCLC patients had reduced live-virus neutralizing activity compared to the healthy vaccinees (P=<0.0001). Spike and RBD-specific binding IgG titers peaked after a week following the second vaccine dose and declined after six months (P=<0.001). While patients >70 years had lower IgG titers (P=<0.01), patients receiving either PD-1 monotherapy, chemotherapy or a combination of both did not have a significant impact on the antibody response. Binding antibody titers to the Delta and Beta variants were lower compared to the WT strain (P=<0.0001). Importantly, we observed significantly lower FRNT50 titers to Delta (6-fold), and Omicron (79-fold) variants (P=<0.0001) in NSCLC patients. CONCLUSIONS: Binding and live-virus neutralizing antibody titers to SARS-CoV-2 mRNA vaccines in NSCLC patients were lower than the healthy vaccinees, with significantly lower live-virus neutralization of B.1.617.2 (Delta), and more importantly, the B.1.1.529 (Omicron) variant compared to the wild-type strain. These data highlight the concern for cancer patients given the rapid spread of SARS-CoV-2 Omicron variant.

19.
Cell Host Microbe ; 30(1): 83-96.e4, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34965382

RESUMO

SARS-CoV-2 infection causes diverse outcomes ranging from asymptomatic infection to respiratory distress and death. A major unresolved question is whether prior immunity to endemic, human common cold coronaviruses (hCCCoVs) impacts susceptibility to SARS-CoV-2 infection or immunity following infection and vaccination. Therefore, we analyzed samples from the same individuals before and after SARS-CoV-2 infection or vaccination. We found hCCCoV antibody levels increase after SARS-CoV-2 exposure, demonstrating cross-reactivity. However, a case-control study indicates that baseline hCCCoV antibody levels are not associated with protection against SARS-CoV-2 infection. Rather, higher magnitudes of pre-existing betacoronavirus antibodies correlate with more SARS-CoV-2 antibodies following infection, an indicator of greater disease severity. Additionally, immunization with hCCCoV spike proteins before SARS-CoV-2 immunization impedes the generation of SARS-CoV-2-neutralizing antibodies in mice. Together, these data suggest that pre-existing hCCCoV antibodies hinder SARS-CoV-2 antibody-based immunity following infection and provide insight on how pre-existing coronavirus immunity impacts SARS-CoV-2 infection, which is critical considering emerging variants.


Assuntos
Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , COVID-19/imunologia , Resfriado Comum/imunologia , Imunidade Humoral/imunologia , SARS-CoV-2/imunologia , Animais , Infecções Assintomáticas , COVID-19/virologia , Estudos de Casos e Controles , Linhagem Celular , Resfriado Comum/virologia , Reações Cruzadas/imunologia , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína da Espícula de Coronavírus/imunologia
20.
PLoS Comput Biol ; 17(10): e1009468, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34648489

RESUMO

Understanding how immunological memory lasts a lifetime requires quantifying changes in the number of memory cells as well as how their division and death rates change over time. We address these questions by using a statistically powerful mixed-effects differential equations framework to analyze data from two human studies that follow CD8 T cell responses to the yellow fever vaccine (YFV-17D). Models were first fit to the frequency of YFV-specific memory CD8 T cells and deuterium enrichment in those cells 42 days to 1 year post-vaccination. A different dataset, on the loss of YFV-specific CD8 T cells over three decades, was used to assess out of sample predictions of our models. The commonly used exponential and bi-exponential decline models performed relatively poorly. Models with the cell loss following a power law (exactly or approximately) were most predictive. Notably, using only the first year of data, these models accurately predicted T cell frequencies up to 30 years post-vaccination. Our analyses suggest that division rates of these cells drop and plateau at a low level (0.1% per day, ∼ double the estimated values for naive T cells) within one year following vaccination, whereas death rates continue to decline for much longer. Our results show that power laws can be predictive for T cell memory, a finding that may be useful for vaccine evaluation and epidemiological modeling. Moreover, since power laws asymptotically decline more slowly than any exponential decline, our results help explain the longevity of immune memory phenomenologically.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Vacina contra Febre Amarela/imunologia , Vírus da Febre Amarela/imunologia , Biologia Computacional , Humanos , Modelos Imunológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...